The technology to grow bulk, semi-insulating SiC, Cd(Zn)Te and GaN single crystals is highly demanding. Various compensation schemes, requiring precise control and assessment of the participating intrinsic defects, intentional dopants and unintentional impurities, are under investigation and development. Different approaches are pursued and material quality is improving and adapting at a rapid pace to ever-increasing specification and quality requirements of the customers. In order to obtain reproducible resistivity values, the activation energy determined by the compensation process must be tightly controlled. The most convenient way to do this is to measure resistivity at Variable Temperature and to deduce an Arrhenius plot.

Also, customers generally request a minimum resistivity at a specified elevated temperature, to be verified by the vendor.
COREMA – VT has been developed to meet these demands. A fully automated temperature adjustment, resistivity measurement and Arrhenius plot data evaluation is provided. As is common to SemiMap instrumentation, the procedure is non-destructive and noncontacting. No sample preparation is needed - not necessarily, but as a convenient option, standard production wafers are analysed and thereafter used for other purposes. The individual sampling at each specific temperature is very rapid, such that the measurement time is determined by the temperature scanning alone.

The high performance SiN heater plate unit is placed in a compartment providing thermal insulation and illumination shielding. The latter is necessary to avoid falsification by photoinduced conductivity. The 6 mm diameter annular capacitive probe is assembled in a central bore of the heater plate.

The high performance ceramic heater plate allows rapid heating of the sample at selectable rates and up to 400 °C. The heating power is supplied by a programmable source allowing precise control of the temperature cycle monitored by a thermocouple sensor which is placed directly adjacent to the capacitive probe. A second compartment behind the heater compartment is equipped with a computer controlled exhaust ventilator to adjust the cooling rate.
A typical measurement cycle comprises heating in the dark, whereby eventual persistent photoconductivity is detected, analysed and removed, followed by slow cooling in the dark while resistivity is measured consecutively. The data are displayed in the form of an Arrhenius plot and the activation energy is evaluated by best fitting.

If (as shown below) in the Arrhenius plot is linear, the Fermi level does not depend on temperature, i.e. is securely pinned to the compensation level. Curved Arrhenius plot result from shifting of the Fermi level with temperature, indicating unstable compensation wherein different defect levels are participating.

Hence COREMA-VT is a powerful tool not only for routine control of specifications, but also for in-depth analysis of exploratory material development.

![Arrhenius plot of s.i. SiC substrate resistivity](image)

Activ. Energy: 1536 meV

For more information contact

US, Japan, Asia

Hologenix, Inc.
5932 Bolsa Avenue, Suite 104
Huntington Beach, CA 92649

Phone: (714) 903-5999
Fax: (714) 903-5959

E-mail: sales@hologenix.com
Web: www.hologenix.com

Europe

SemiMap Scientific Instruments GmbH
Tullastr. 67
D79108 Freiburg i. Br.

Phone: * 49 (0) 761/55 77 878
Fax : * 49 (0) 761/55 77 879

Email : info@semimap.de
Web: www.semimap.de
COREMA - VT
Specifications

Mechanical Setup

Components
Ceramic heating stage Specially developed for COREMA-VT
Built-in capacitive sensor High temperature compatible development
Light tight measurement box
Exhaust ventilator Computer and sample temperature controlled

Specifications
Sample loading Manual
Sample thickness 250 – 1000 µm
Wafer diameter 2" to 150 mm
Temperature range RT to 400 °C
Heating speed 2 °C/s max
Forced air cooling ca. 10 °C/min

Measurement System

Components
Charge amplifier Specially developed
Digitizer adapted OEM
Pulse Generator adapted OEM

Specifications
Sensor 6 mm diameter
Lateral resolution 8 mm
Minimum sample size 10 mm diameter
Minimum distance of sensor center to edge of sample 4 mm
Repeatability of ∆E evaluation (4 consecutive measurements) < 2 %
Resistivity range 1x10⁵ – 1x10¹² Ωcm
Arrhenius plot evaluation time about 30 min

Measurement Control

Components
Computer Pentium PC with CD-RW and NIC – Microsoft Windows
Software Custom Windows based measurement control and evaluation program

Specifications
Operation User-friendly menu-driven selection and control of measurement routines